Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 745325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888257

RESUMO

Successful bacterial pathogens have evolved to avoid activating an innate immune system in the host that responds to the pathogen through distinct Toll-like receptors (TLRs). The general class of biochemical components that activate TLRs has been studied extensively, but less is known about how TLRs interact with the class of compounds that are still associated with the live pathogen. Accordingly, we examined the activation of surface assembled TLR 2, 4, and 5 with live Tier 1 Gram-negative pathogens that included Yersinia pestis (plague), Burkholderia mallei (glanders), Burkholderia pseudomallei (melioidosis), and Francisella tularensis (tularemia). We found that Y. pestis CO92 grown at 28°C activated TLR2 and TLR4, but at 37°C the pathogen activated primarily TLR2. Although B. mallei and B. pseudomallei are genetically related, the former microorganism activated predominately TLR4, while the latter activated predominately TLR2. The capsule of wild-type B. pseudomallei 1026b was found to mitigate the activation of TLR2 and TLR4 when compared to a capsule mutant. Live F. tularensis (Ft) Schu S4 did not activate TLR2 or 4, although the less virulent Ft LVS and F. novicida activated only TLR2. B. pseudomallei purified flagellin or flagella attached to the microorganism activated TLR5. Activation of TLR5 was abolished by an antibody to TLR5, or a mutation of fliC, or elimination of the pathogen by filtration. In conclusion, we have uncovered new properties of the Gram-negative pathogens, and their interaction with TLRs of the host. Further studies are needed to include other microorganism to extend our observations with their interaction with TLRs, and to the possibility of leading to new efforts in therapeutics against these pathogens.


Assuntos
Melioidose , Receptor 4 Toll-Like , Animais , Flagelos , Receptor 4 Toll-Like/genética , Receptor 5 Toll-Like , Receptores Toll-Like
2.
Front Microbiol ; 12: 625211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967974

RESUMO

Burkholderia mallei, the causative agent of glanders, is a gram-negative intracellular bacterium. Depending on different routes of infection, the disease is manifested by pneumonia, septicemia, and chronic infections of the skin. B. mallei poses a serious biological threat due to its ability to infect via aerosol route, resistance to multiple antibiotics and to date there are no US Food and Drug Administration (FDA) approved vaccines available. Induction of innate immunity, inflammatory cytokines and chemokines following B. mallei infection, have been observed in in vitro and small rodent models; however, a global characterization of host responses has never been systematically investigated using a non-human primate (NHP) model. Here, using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we identified alterations in expression levels of host proteins in peripheral blood mononuclear cells (PBMCs) originating from naïve rhesus macaques (Macaca mulatta), African green monkeys (Chlorocebus sabaeus), and cynomolgus macaques (Macaca fascicularis) exposed to aerosolized B. mallei. Gene ontology (GO) analysis identified several statistically significant overrepresented biological annotations including complement and coagulation cascade, nucleoside metabolic process, vesicle-mediated transport, intracellular signal transduction and cytoskeletal protein binding. By integrating an LC-MS/MS derived proteomics dataset with a previously published B. mallei host-pathogen interaction dataset, a statistically significant predictive protein-protein interaction (PPI) network was constructed. Pharmacological perturbation of one component of the PPI network, specifically ezrin, reduced B. mallei mediated interleukin-1ß (IL-1ß). On the contrary, the expression of IL-1ß receptor antagonist (IL-1Ra) was upregulated upon pretreatment with the ezrin inhibitor. Taken together, inflammasome activation as demonstrated by IL-1ß production and the homeostasis of inflammatory response is critical during the pathogenesis of glanders. Furthermore, the topology of the network reflects the underlying molecular mechanism of B. mallei infections in the NHP model.

3.
Microb Pathog ; 155: 104919, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915206

RESUMO

Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo , Melioidose , Aerossóis , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Mormo/diagnóstico , Cavalos , Macaca mulatta
4.
PLoS Negl Trop Dis ; 15(2): e0009125, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571211

RESUMO

Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. B. pseudomallei is a potential bioterrorism agent due to its high infectivity, especially via inhalation, and its inherent resistance to antimicrobials. There is currently no vaccine for melioidosis and antibiotic treatment can fail due to innate drug resistance, delayed diagnosis and treatment, or insufficient duration of treatment. A well-characterized animal model that mimics human melioidosis is needed for the development of new medical countermeasures. This study first characterized the disease progression of melioidosis in the African green monkey (AGM) and rhesus macaque (RM) for non-human primate model down-selection. All AGMs developed acute lethal disease similar to that described in human acute infection following exposure to aerosolized B. pseudomallei strain HBPUB10134a. Only 20% of RMs succumbed to acute disease. Disease progression, immune response and pathology of two other strains of B. pseudomallei, K96243 and MSHR5855, were also compared using AGMs. These three B. pseudomallei strains represent a highly virulent strain from Thailand (HBPUB101034a), a highly virulent strains from Australia (MSHR5855), and a commonly used laboratory strains originating from Thailand (K96243). Animals were observed for clinical signs of infection and blood samples were analyzed for cytokine responses, blood chemistry and leukocyte changes in order to characterize bacterial infection. AGMs experienced fever after exposure to aerosolized B. pseudomallei at the onset of acute disease. Inflammation, abscesses and/or pyogranulomas were observed in lung with all three strains of B. pseudomallei. Inflammation, abscesses and/or pyogranulomas were observed in lymph nodes, spleen, liver and/or kidney with B. pseudomallei, HBPUB10134a and K96243. Additionally, the Australian strain MSHR5855 induced brain lesions in one AGM similar to clinical cases of melioidosis seen in Australia. Elevated serum levels of IL-1ß, IL-1 receptor antagonist, IL-6, MCP-1, G-CSF, HGF, IFNγ, MIG, I-TAC, and MIP-1ß at terminal end points can be significantly correlated with non-survivors with B. pseudomallei infection in AGM. The AGM model represents an acute model of B. pseudomallei infection for all three strains from two geographical locations and will be useful for efficacy testing of vaccines and therapeutics against melioidosis. In summary, a dysregulated immune response leading to excessive persistent inflammation and inflammatory cell death is the key driver of acute melioidosis. Early intervention in these pathways will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis.


Assuntos
Aerossóis , Burkholderia pseudomallei , Melioidose/microbiologia , Melioidose/patologia , Animais , Sudeste Asiático , Austrália , Bacteriemia , Medula Óssea/patologia , Quimiocinas/metabolismo , Chlorocebus aethiops , Citocinas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fígado/patologia , Pulmão/patologia , Macaca mulatta , Baço/patologia , Telemetria , Tailândia , Virulência
5.
Trop Med Infect Dis ; 5(2)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365605

RESUMO

Burkholderia pseudomallei and B. mallei are Gram-negative, facultative intracellular bacteria that cause melioidosis and glanders, respectively. Currently, there are no vaccines for these two diseases. Animal models have been developed to evaluate vaccines and therapeutics. Tissues from infected animals, however, must be fixed in formalin and embedded in paraffin (FFPE) before analysis. A brownish staining material in infected tissues that represents the exopolysaccharide of the pathogen was seen by bright field microscopy but not the actual microorganism. Because of these results, FFPE tissue was examined by laser scanning confocal microscopy (LSCM) in an attempt to see the microorganism. Archival FFPE tissues were examined from ten mice, and five nonhuman primates after exposure to B. pseudomallei or B. mallei by LSCM. Additionally, a historical spleen biopsy from a human suspected of exposure to B. mallei was examined. B. pseudomallei was seen in many of the infected tissues from mice. Four out of five nonhuman primates were positive for the pathogen. In the human sample, B. mallei was seen in pyogranulomas in the spleen biopsy. Thus, the presence of the pathogen was validated by LSCM in murine, nonhuman primate, and human FFPE tissues.

6.
BMC Immunol ; 21(1): 5, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013893

RESUMO

BACKGROUND: Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS: We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-γ, IL-1α, IL-1ß, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1α, IL-1ß, TNF-α, IFN-γ) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-γ, TNF-α, and MIP-1α ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-α and IFN-γ without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION: Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans.


Assuntos
Burkholderia pseudomallei/fisiologia , Interferon gama/metabolismo , Melioidose/imunologia , Baço/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C
7.
PLoS One ; 13(11): e0208277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500862

RESUMO

Mouse models have been essential to generate supporting data for the research of infectious diseases. Burkholderia pseudomallei, the etiological agent of melioidosis, has been studied using mouse models to investigate pathogenesis and efficacy of novel medical countermeasures to include both vaccines and therapeutics. Previous characterization of mouse models of melioidosis have demonstrated that BALB/c mice present with an acute infection, whereas C57BL/6 mice have shown a tendency to be more resistant to infection and may model chronic disease. In this study, either BALB/c or C57BL/6 mice were exposed to aerosolized human clinical isolates of B. pseudomallei. The bacterial strains included HBPUB10134a (virulent isolate from Thailand), MSHR5855 (virulent isolate from Australia), and 1106a (relatively attenuated isolate from Thailand). The LD50 values were calculated and serial sample collections were performed in order to examine the bacterial burdens in tissues, histopathological features of disease, and the immune response mounted by the mice after exposure to aerosolized B. pseudomallei. These data will be important when utilizing these models for testing novel medical countermeasures. Additionally, by comparing highly virulent strains with attenuated isolates, we hope to better understand the complex disease pathogenesis associated with this bacterium.


Assuntos
Burkholderia pseudomallei/fisiologia , Melioidose/patologia , Animais , Formação de Anticorpos , Austrália/epidemiologia , Brônquios/imunologia , Brônquios/microbiologia , Brônquios/patologia , Burkholderia pseudomallei/patogenicidade , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Melioidose/sangue , Melioidose/epidemiologia , Melioidose/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tailândia/epidemiologia , Virulência
8.
PLoS One ; 10(7): e0132032, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26148026

RESUMO

Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia mallei/genética , Expressão Gênica , Mormo/prevenção & controle , Melioidose/prevenção & controle , Antígenos O/imunologia , Salmonella typhimurium/imunologia , Animais , Vacinas Bacterianas/genética , Burkholderia mallei/imunologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/imunologia , Modelos Animais de Doenças , Mormo/imunologia , Humanos , Melioidose/imunologia , Camundongos , Antígenos O/genética , Salmonella typhimurium/genética
9.
PLoS One ; 10(4): e0124667, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909629

RESUMO

Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the macrophage phagocytosis assay. Strains which were more virulent for mice (e.g., HBPU10304a) were often less virulent in the macrophage assays, as determined by several parameters such as intracellular bacterial replication and host cell cytotoxicity.


Assuntos
Burkholderia pseudomallei/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Melioidose/imunologia , Melioidose/microbiologia , Abscesso/imunologia , Abscesso/microbiologia , Abscesso/patologia , Animais , Burkholderia pseudomallei/patogenicidade , Modelos Animais de Doenças , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Melioidose/metabolismo , Melioidose/patologia , Camundongos , Fenótipo
10.
Antimicrob Agents Chemother ; 59(4): 2236-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645854

RESUMO

Burkholderia mallei, the causative agent of glanders, is a CDC Tier 1 Select Agent for which there is no preventive vaccine and antibiotic therapy is difficult. In this study, we show that a combination of vaccination using killed cellular vaccine and therapy using moxifloxacin, azithromycin, or sulfamethoxazole-trimethoprim can protect BALB/c mice from lethal infection even when given 5 days after infectious challenge. Vaccination only, or antibiotic therapy only, was not efficacious. Although antibiotics evaluated experimentally can protect when given before or 1 day after challenge, this time course is not realistic in the cases of natural infection or biological attack, when the patient seeks treatment after symptoms develop or after a biological attack has been confirmed and the agent has been identified. Antibiotics can be efficacious after a prolonged interval between exposure and treatment, but only if the animals were previously vaccinated.


Assuntos
Antibacterianos/uso terapêutico , Vacinas Bacterianas/uso terapêutico , Mormo/terapia , Aerossóis , Animais , Azitromicina/uso terapêutico , Burkholderia mallei/imunologia , Terapia Combinada , Feminino , Fluoroquinolonas/uso terapêutico , Mormo/tratamento farmacológico , Mormo/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Baço/microbiologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Vacinação
11.
Microb Pathog ; 78: 20-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450887

RESUMO

Burkholderia pseudomallei infection causes melioidosis and is often characterized by severe sepsis. Although rare in humans, Burkholderia mallei has caused infections in laboratory workers, and the early innate cellular response to B. mallei in human and nonhuman primates has not been characterized. In this study, we examined the primary cellular immune response to B. mallei in PBMC cultures of non-human primates (NHPs), Chlorocebus aethiops (African Green Monkeys), Macaca fascicularis (Cynomolgus macaque), and Macaca mulatta (Rhesus macaque) and humans. Our results demonstrated that B. mallei elicited strong primary pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1ß, and IL-6) equivalent to the levels of B. pseudomallei in primary PBMC cultures of NHPs and humans. When we examined IL-1ß and other cytokine responses by comparison to Escherichia coli LPS, African Green Monkeys appears to be most responsive to B. mallei than Cynomolgus or Rhesus. Characterization of the immune signaling mechanism for cellular response was conducted by using a ligand induced cell-based reporter assay, and our results demonstrated that MyD88 mediated signaling contributed to the B. mallei and B. pseudomallei induced pro-inflammatory responses. Notably, the induced reporter activity with B. mallei, B. pseudomallei, or purified LPS from these pathogens was inhibited and cytokine production was attenuated by a MyD88 inhibitor. Together, these results show that in the scenario of severe hyper-inflammatory responses to B. mallei infection, MyD88 targeted therapeutic intervention may be a successful strategy for therapy.


Assuntos
Burkholderia mallei/imunologia , Mormo/imunologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Animais , Burkholderia mallei/fisiologia , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Mormo/genética , Mormo/microbiologia , Humanos , Imunidade Celular , Leucócitos Mononucleares/microbiologia , Macaca fascicularis , Macaca mulatta
12.
Chem Biol Drug Des ; 86(2): 200-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25393063

RESUMO

Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 µm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 µm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 µm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Inflamação/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/química , Animais , Anti-Inflamatórios/síntese química , Materiais Biomiméticos/síntese química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Citocinas/imunologia , Desenho de Fármacos , Enterotoxinas/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Choque Séptico/tratamento farmacológico , Relação Estrutura-Atividade
13.
Comp Med ; 64(5): 341-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25402174

RESUMO

After preliminary assessment of virulence in AKR/J, DBA/1, BALB/c, and C57BL/6 mice, we investigated histopathologic changes in BALB/c and C57BL/6 mice infected with type A (strain SCHU S4) or type B (strain 425) Francisella tularensis by aerosol exposure. In mice exposed to type A infection, changes in histologic presentation were not apparent until day 3 after infection, when pyogranulomatous inflammation was detected in spleens and livers of BALB/c mice, and in lungs and spleens of C57BL/6 mice. Histopathologic changes were most severe and widespread in both mouse strains on day 5 after infection and seemed to completely resolve within 22 d of challenge. BALB/c mice were more resistant than C57BL/6 mice in lethal-dose calculations, but C57BL/6 mice cleared the infection more rapidly. Mice similarly challenged with type B F. tularensis also developed histopathologic signs of infection beginning on day 3. The most severe changes were noted on day 8 and were characterized by granulomatous or pyogranulomatous infiltrations of the lungs. Unlike type A infection, lesions due to type B did not resolve over time and remained 3 wk after infection. In type B, but not type A, infection we noted extensive inflammation of the heart muscle. Although no microorganisms were found in tissues of type A survivors beyond 9 d after infection, mice surviving strain 425 infection had a low level of residual infection at 3 wk after challenge. The histopathologic presentation of tularemia caused by F. tularensis types A and B in BALB/c and C57BL/6 mice bears distinct similarities to tularemia in humans.


Assuntos
Modelos Animais de Doenças , Francisella tularensis/genética , Inflamação/patologia , Camundongos Endogâmicos BALB C/imunologia , Camundongos Endogâmicos C57BL/imunologia , Tularemia/microbiologia , Tularemia/fisiopatologia , Aerossóis/administração & dosagem , Animais , Francisella tularensis/classificação , Inflamação/microbiologia , Fígado/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C/microbiologia , Camundongos Endogâmicos C57BL/microbiologia , Especificidade da Espécie , Baço/patologia , Tularemia/imunologia
14.
Virulence ; 3(6): 510-4, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23076276

RESUMO

The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.


Assuntos
Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Proteínas de Bactérias/imunologia , Burkholderia mallei/imunologia , Mormo/imunologia , Armas Biológicas , Burkholderia pseudomallei/imunologia , Mormo/diagnóstico , Mormo/microbiologia , Humanos
15.
Clin Vaccine Immunol ; 19(5): 814-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398248

RESUMO

Within 2 months of acquiring glanders, a patient developed 8-, 16-, and 4-fold increases, respectively, in specific IgA, IgG, and IgM serological titers against Burkholderia mallei. Within 14 months of infection, the titers decreased to the baseline. Serum from this patient was also highly reactive against Burkholderia pseudomallei whole cells. Burkholderia mallei whole cells did not react with sera from patients with other diseases. Therefore, an assay using a B. mallei cellular diagnostic antigen may be useful for the serodiagnosis of glanders.


Assuntos
Anticorpos Antibacterianos/sangue , Burkholderia mallei/imunologia , Mormo/imunologia , Burkholderia pseudomallei/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Fatores de Tempo
16.
Infect Immun ; 77(4): 1636-48, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168747

RESUMO

Burkholderia mallei, a category B biothreat agent, is a facultative intracellular pathogen that causes the zoonotic disease glanders. The B. mallei VirAG two-component regulatory system activates the transcription of approximately 60 genes, including a large virulence gene cluster encoding a type VI secretion system (T6SS). The B. mallei tssM gene encodes a putative ubiquitin-specific protease that is physically linked to, and transcriptionally coregulated with, the T6SS gene cluster. Mass spectrometry and immunoblot analysis demonstrated that TssM was secreted in a virAG-dependent manner in vitro. Surprisingly, the T6SS was found to be dispensable for the secretion of TssM. The C-terminal half of TssM, which contains Cys and His box motifs conserved in eukaryotic deubiquitinases, was purified and biochemically characterized. Recombinant TssM hydrolyzed multiple ubiquitinated substrates and the cysteine at position 102 was critical for enzymatic activity. The tssM gene was expressed within 1 h after uptake of B. mallei into RAW 264.7 murine macrophages, suggesting that the TssM deubiquitinase is produced in this intracellular niche. Although the physiological substrate(s) is currently unknown, the TssM deubiquitinase may provide B. mallei a selective advantage in the intracellular environment during infection.


Assuntos
Burkholderia mallei/enzimologia , Burkholderia mallei/patogenicidade , Endopeptidases , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia mallei/genética , Linhagem Celular , Cricetinae , Endopeptidases/genética , Endopeptidases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mormo/microbiologia , Mormo/mortalidade , Macrófagos/enzimologia , Mesocricetus/microbiologia , Camundongos , Proteases Específicas de Ubiquitina
17.
Clin Vaccine Immunol ; 15(10): 1505-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18701647

RESUMO

Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 microg, followed by a booster dose of 30 microg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/imunologia , Coxiella burnetii/imunologia , Linfócitos T/imunologia , Vacinação/métodos , Adulto , Animais , Vacinas Bacterianas/administração & dosagem , Células Cultivadas , Embrião de Galinha , Coxiella burnetii/química , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunização Secundária , Injeções Subcutâneas , Ativação Linfocitária , Masculino , Placebos/administração & dosagem , Febre Q/prevenção & controle
18.
Diagn Microbiol Infect Dis ; 59(2): 137-47, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17908615

RESUMO

We examined, by enzyme-linked immunosorbent assay and Western blot analysis, the host immune response to 2 heat-shock proteins (hsps) in a patient and mice previously infected with Burkholderia mallei. The patient was the first reported human glanders case in 50 years in the United States. The expression of the groEL and dnaK operons appeared to be dependent upon a sigma(32) RNA polymerase as suggested by conserved heat-shock promoter sequences, and the groESL operon may be negatively regulated by a controlling invert repeat of chaperone expression (CIRCE) site. In the antisera, the GroEL protein was found to be more immunoreactive than the DnaK protein in both a human patient and mice previously infected with B. mallei. Examination of the supernatant of a growing culture of B. mallei showed that more GroEL protein than DnaK protein was released from the cell. This may occur similarly within an infected host causing an elevated host immune response to the B. mallei hsps.


Assuntos
Anticorpos Antibacterianos/sangue , Burkholderia mallei/imunologia , Chaperonina 60/imunologia , Mormo/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Imunoglobulina G/sangue , Animais , Burkholderia mallei/genética , Burkholderia mallei/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Regulação Bacteriana da Expressão Gênica , Mormo/microbiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Óperon , Análise de Sequência de DNA
19.
Vaccine ; 25(42): 7288-95, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17825460

RESUMO

Designation as a Category B biothreat agent has propelled Coxiella burnetii from a relatively obscure, underappreciated, "niche" microorganism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study of this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be manipulated under biosafety level-3 conditions. The dogged determination of past and current C. burnetii researchers and the application of modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is intended to provide a basic introduction to C. burnetii and Q fever, while emphasizing immunomodulatory properties, both positive and negative, of Q fever vaccines and C. burnetii infections.


Assuntos
Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Febre Q/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Bioterrorismo , Humanos , Febre Q/prevenção & controle
20.
Infect Immun ; 75(6): 3027-32, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17403869

RESUMO

Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.


Assuntos
Vacinas Bacterianas/administração & dosagem , Burkholderia mallei/química , Proteínas de Fímbrias/administração & dosagem , Proteínas de Fímbrias/genética , Mormo/prevenção & controle , Aerossóis , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/biossíntese , Vacinas Bacterianas/imunologia , Burkholderia mallei/imunologia , Modelos Animais de Doenças , Proteínas de Fímbrias/imunologia , Proteínas de Fímbrias/metabolismo , Mormo/imunologia , Mormo/mortalidade , Camundongos , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...